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Transient currents of electrolytes in response to a voltage step can reveal a lot about the behavior of charges
present in an electrolyte. In this paper, electrolytes with high ionic strength are considered. In the limit of small
voltage steps, the interpretation is straightforward as the equations describing the transient can be linearized.
However, when high ion concentrations and voltage steps of the order of kT /q are considered, we find
higher-order effects that occur simultaneously with the diffuse double layer charging. In this case, the diffuse
double layer and the transient diffusion layer are coupled because of the screening of the field, leading to a
−3 /2 power law for the transient current.
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I. INTRODUCTION

The behavior of charges in liquids under the influence of
an applied voltage is a very general problem. However, even
when only drift and diffusion of the charges are considered
�neglecting chemical reactions between charges and at inter-
faces�, the nonlinear character of the relevant equations re-
sults in a variety of different phenomena. The behavior of an
electrolyte depends mainly on the amplitude of the applied
voltage and on the amount of charges in the device. Polar
solvents generally contain more charges than nonpolar sol-
vents due to their smaller Bjerrum length. However, when a
charging agent is used, such as a surfactant, high charge
concentrations can also occur in nonpolar solvents �1�. Ap-
plications of polar electrolytes are electrochromic devices �2�
and dye sensitized solar cells �3�, whereas for nonpolar elec-
trolytes, important applications are liquid crystal displays
�4�, electrophoretic ink �5�, and the stabilization of soot in
petrol �6�.

Measurements of transient currents can reveal a lot about
the number, the nature, and the behavior of the charges in a
liquid �7,8�. Typically, at time t=0, a voltage step from 0 to
V is applied over a planar structure with thickness d �Fig. 1�.
Between the high potential electrode at position x=−d /2 and
the low potential electrode at x=d /2 is a solvent at tempera-
ture T with relative dielectric constant �r. This solvent con-
tains an equal amount of positive and negative charges �q
�C�, which are identical except for their polarity. The average
density of charges �including positive and negative charges�
is n̄ �m−3�. The charges have mobility � �m2 V−1 s−1� and
diffusion constant D �m2 s−1�, which are related by Einstein’s
equation D /�=kT /q, in which k is Boltzmann’s constant.

In this work, the situation of a high charge content �so that
the Debye length �D=��r�0kT /q2n̄ is small compared to the
thickness of the device� and relatively small voltage steps
�smaller than or around kT /q� is discussed analytically and
compared with numerical simulations. Under these circum-
stances, double layer charging is initially the dominant phe-
nomenon, resulting in an exponentially decreasing transient
current �9�. Near the double layer, the concentration of posi-

tive and negative charges becomes lower than in the bulk. As
a result, positive and negative charges diffuse toward the
electrodes, as previously explained by Bazant et al. �10�.
This diffusion of two opposite charges is not associated with
a current, but the readjustment of the double layer leads to a
measurable current. This transient current is negligible dur-
ing the initial double layer charging, but it becomes domi-
nant at longer times because it decreases more slowly than an
exponential decay. We derive an analytical expression for
this current contribution and discuss for which parameter
values and during which time interval this expression is a
good approximation of the total current.

II. THEORY

Assuming a symmetrical electrolyte and neglecting reac-
tions between the ions, charge transport in a one-dimensional
device can be described by the laws of drift and diffusion
�expressed by the Nernst-Planck equation� together with the
continuity equation, which are formulated as �11�
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In these equations, n�x , t� �m−3� is the total density �the sum
of the densities of positive and negative charges�, and ��x , t�
�C m−3� is the charge density. The electric field E�x , t�
�V m−1� is related to the charge density by Gauss’s law
�r�0�E /�x=�, and to the applied voltage by V=�−d/2

d/2 Edx. We
assume blocking electrodes, so the flux of charges and the
current density at the electrodes is zero. Initially, all charges
are homogeneously distributed, so that n= n̄ and �=0.

The partial differential equations �1� and �2� are dis-
cretized and the values for the next time step are found by
using an iterative method. The backward Euler scheme is an
implicit method, involving the inversion of a large matrix.
The intervals have different widths with smaller intervals
near the edges. Sharp spatial variations in � and n are treated
with Bernoulli functions �12�. The resulting simulation pro-
gram is fast and accurate enough for our purposes even if*Corresponding author; matthias.marescaux@elis.ugent.be
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high charge concentrations or large voltage steps are consid-
ered.

For low voltages �V�kT /q�, the dominant role of diffu-
sion allows one to assume that the total density n is approxi-
mately constant and homogeneous. The steady-state solution
�SS�x� �C m−3� of the charge density can then be found by
equating the time derivative in Eq. �2� to zero,

�SS = qn̄
qV

2kT

sinh� x

�D
�

sinh� d

2�D
� . �3�

The steady-state electric field corresponding with Eq. �3� can
then be found using Gauss’s law,

ESS =
V

2�D

cosh� x

�D
�

sinh� d

2�D
� . �4�

Substituting these results back in Eq. �1�, and assuming
�D�d, the following solution for the total density in steady
state is found:

nSS = n̄	1 −
1

2
� qV

2kT
�2�D

d

 + n̄

1

2
� qV

2kT
�2cosh� 2x
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�

sinh� d
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Notice that the characteristic screening length is different
for nSS ��D /2� in comparison with �SS ��D�. For high charge
contents ��D�d�, the dynamics of the charge density is well
described by a single exponential �9�,

� = �SS	1 − exp�−
2Dt

�Dd
�
 . �6�

Using Ramo’s theorem �13,14�, one can find the external
electric current I�t� that corresponds to this double layer
charging �with S the area of the device�,

IDL = Sqn̄�
V

d
exp�−

2Dt

�Dd
� , �7�

which results in a charge Qel,SS on the electrodes in steady
state given by

Qel,SS =
�r�0S

�D

V

2
. �8�

The dynamics of the total density n is more complicated.
The concentration of charges near the electrodes, in a layer
with thickness of the order �D /2, is built up by drift and
diffusion with roughly the same time constant as the double
layer charge �9�, �Dd /2D. Equation �5� shows that, in steady
state, this build up near the interfaces is compensated by a
small decrease of the total density over the whole thickness
of the device. However, this homogeneous decrease cannot
occur on the short time scale of double layer charging. The
charges which build up the concentration near the interfaces
in a time �Dd /2D can therefore only have come from a re-
gion near the interfaces with a width of the order of the
diffusion length on this time scale. This becomes obvious if
one considers the case �D�d. In this case, a very thin double
layer �with width �D� builds up in a very short time interval
�Dd /2D. These charges have arrived there by diffusion from
a region near the electrodes with thickness in the order of
��Dd /2, which is larger than the double layer, but still very
thin. These diffusion layers are subsequently filled up, over a
much longer time scale, by diffusion of charges from the
whole device. The evolution of the total density in these
layers can be described by the Gaussian diffusion of two
very thin layers �10�, containing a total amount of charges
opposite to the integrated total density in the double layers
n̄

�D

2 � qV
2kT �2, resulting in
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It should be noted that Eq. �9� assumes a sufficiently large
device thickness. As time progresses, this assumption will
not remain valid, because the diffusion length becomes com-
parable to the thickness d. This also implies that Eq. �9�
approaches 0 if large times �steady state� are considered
which means that the conservation of the number of charges
is violated. If both boundaries of the sample are taken into
account, the evolution of the diffusion layers can be de-
scribed by

ndiff = − n̄
�D

2
� qV

2kT
�2 1

2��Dt
�

k=−	

+	

exp�−
�x + �2k − 1�d/2�2

4Dt
� .

�10�

At all times, �−d/2
d/2 ndiffdx=−n̄

�D

2 � qV
2kT �2, so the total amount

of charges �−d/2
d/2 ndx= n̄d is conserved �see Eq. �5��. Figure 2

shows a simulation illustrating the diffusion of charges from
the bulk to the surfaces.

V

x=-d/2 x=d/2x=0

t=00

d
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n(x,t)

εrε0

I

FIG. 1. Schematic representation of the model. At t=0 s, a volt-
age V is applied to a homogeneous, symmetric electrolyte with
relative dielectric constant �r between two blocking electrodes at a
distance d from each other.
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The evolution of the diffusion layers has an indirect effect
on the charge density �and thus the current�, because the
diffusion layers lead to a correction on the original assump-
tion that leads to Eqs. �3�, �4�, and �6�–�8�. These equations
were calculated assuming that the total density just outside of
the double layer is equal to the average total density n̄.
Evaluating Eq. �9� at x= �d /2 provides a correction on this
value, so that the total density just outside the double layer is
�for t�d2 /D� better described by

n̄� = n̄	1 −
�D

2
� qV

2kT
�2 1

2��Dt

 . �11�

Similarly, a better approximation for the width of the
double layer is given by �D� =��r�0kT /q2n̄�. For times which
are larger than the charging time of the double layer �see Eq.
�6�� but smaller than t�d2 /D �diffusion has not reached the

other side of the device�, the charge on the electrodes can be
approximated by
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�r�0S
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2
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2
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2
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�12�

This charge depends on time and yields a transient current,

Idiff =
�r�0S
��D

V

2
� qV

8kT
�2

t−3/2. �13�

Equation �12� is valid for voltage steps smaller than kT /q.
If, however, intermediate voltages �qV /kT
1� are consid-
ered, Eq. �9� is no longer valid. For intermediate voltages, a
different voltage dependency for the total density has been
proposed in a paper by Bazant et al. �10�,

ndiff = − n̄
�D

2
sinh2� qV

2kT
� 1

2��Dt
	exp�−

�x + d/2�2

4Dt
�

+ exp�−
�x − d/2�2

4Dt
�
 . �14�

Based on Eq. �14� instead of �9�, we can repeat the deri-
vation above using the total density at x= �d /2 for t
�d2 /D. In this way, we obtain the transient current, associ-
ated with the variation of the diffusion layers,

Idiff =
�r�0S
��D

V

2
sinh2� qV

8kT
�t−3/2. �15�

For low voltages, Eq. �15� reduces to Eq. �13�.

III. DISCUSSION

Figure 3 shows the transient currents that are obtained
with the numerical simulation program described above, if
the applied voltage switches from zero to four different val-
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FIG. 2. �Color online� Simulations illustrating the principle of
the evolution of the diffusion layers and their impact on the double
layer. The spreading of the Gaussian profiles �a�, describing diffu-
sion of both charges, is shown for Dt /d�D=2�102 �solid red line�,
2�103 �dashed blue line�, and 2�104 �dashed-dotted green line�
��D /d=10−5 and qV /kT=1�. The thickness and the height of the
diffuse double layer for n and � �b� changes only a little for differ-
ent Dt /d�D �not visible in this figure�.
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FIG. 3. �Color online� Simulations of tran-
sient currents in response to different voltage
steps, qV

kT =1, 2, 10, and 25.918 �for which
�diff /�DL=3 /2� for �D /d=10−5 �blue lines�. The
transient currents are compared with both analyti-
cal fits, the exponential �Eq. �7�� �red lines� and
the power-law decay �Eq. �15�� �green lines�,
showing good agreement for the lowest voltages.
The intersection point between the exponential
and the power-law decay is drawn �dots� as well
as the end of the validity of the −3 /2 power-law
decay for which Dt /�Dd�d /8�D �vertical black
line�.
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ues. The simulation results are compared with the analytical
expressions in Eqs. �7� and �15�. The initial part of the tran-
sient current is best described by the exponential curve cor-
responding to double layer charging �Eq. �7��. For the three
lowest voltages, there is a time interval where the simulated
current is well described by the formula for the spreading of
diffusion layers �Eq. �15��. The noise in the simulated tran-
sient current at larger times �Dt /�Dd
10� is due to the di-
vision of two small numbers in the algorithm. For the highest
voltage, the correspondence between the simulations and the
analytical model gets worse because the electric field in the
bulk is no longer negligible.

The currents given by Eqs. �7� and �15� intersect at a
certain time �diff, as long as the applied voltage is sufficiently
small. The value of �diff is found by setting the currents in
both equations equal, resulting in

sinh2� qV

8kT
� =� �d

2�D
� �diff

�DL
�3/2

exp�−
�diff

�DL
� , �16�

with �DL=�Dd /2D the time constant for double layer charg-
ing. The right-hand side of this equation reaches a maximum
at �diff /�DL=3 /2 and the corresponding voltage V* can be
found by substituting this value in Eq. �16�; qV*

kT
=25.918. For

voltages higher than V*, the two analytical solutions do not

intersect anymore, as can be seen in Fig. 3. These limits
correspond roughly with the conditions for double layer lim-
ited current, explained in Ref. �11�.

In order to find Eq. �15�, we have assumed that the diffu-
sion occurs in an infinite medium. This leads to another limi-
tation for Eq. �15�, namely, that the diffusion length �2Dt
should be smaller than d /2 because both diffusion fronts of
Eq. �9� start to overlap at the middle of the device. This
means that Eq. �15� is only valid for times satisfying the
condition Dt /�Dd�d /8�D. This value is indicated in Fig. 3
as the end time.

IV. CONCLUSION

This work shows that double layer charging cannot be
described consistently without taking the effect of diffusion
of charges into the bulk of the device into account. Although
this diffusion results in a small correction on the bulk total
density, there is an important transient current associated
with it, which is dominant on a longer time scale. The fact
that there is a typical −3 /2 power-law transient current, as-
sociated with the evolution of the diffusion layers, enables an
indirect measurement. A full numerical calculation method is
presented together with analytical approximations for the
current at short and long time scales.
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